FOUR YEAR UNDERGRADUATE PROGRAM(2024 – 28) DEPARTMENT OF CHEMISTRY COURSE CURRICULUM

	rogram: Bachelor in	1 Science	Somester VI			
	egree/Honors)	- -	Semester -VI	Session: 2024-2	2025	
1	Course Code	DSC-06T				
2	Course Title	0	RGANIC AND PHYSIC	AL CHEMISTRY- II		
3	Course Type		DSC			
4	Pre-requisite(if,any)		As per F	rogram		
			d role of quantum mech	anics in chemistry		
- Course Learning P 1		To know the o	 To know the organic compound in biological system To know the polymers in chemistry their preparation and application 			
	Outcomes(CLO)	polymer.	olymers in chemistry the	eir preparation and applic	ation of	
-		> To learn the te	echniques for studying th	he structure of chemical m	iolecule	
6	Credit Value	3 Credits	Credit = 15 Hou	rs -learning & Observat	ion	
7	Total Marks	Max.Marks:	100	Min Passing Marks:40		
Ά	RT -B: Content	of the Cour	se			
	Total No.of Teac	hing-learning P	eriods(01 Hr. per period	d) - 45 Periods (45 Hour	(2:	
Un			oics(Course content		No. of	
I	Quantum Chemist	my I. Plack had	intes (Course contents	liation law, photoelectric		
	effect, Compton eff	fect. de-Broglie's	idea of matter and wa	ves and its experimental		
	verification Heisenh	erg's uncertainty	nice of matter and wa	ves and its experimental		
	momentum operator	Laplacion oneret	principle, operators: Han	niltonian operator, angular	11 T.Y	
	Figen function Sch	Laplacial operation	or, postulates of quantum	mechanics, Eigen values,		
	Ligen function, Schr	ounger time inde	nendent wave equation			
	and W/2 Annlingting		pendent wave equation,	only significance of Ψ		
	and F. Application	of Schrödinger wa	we equation to Particle in	bhysical significance of Ψ one dimensional box.		
	Quantum Chemistr	v II:-Ouantum r	we equation to Particle in	one dimensional box.		
	Quantum Chemistr basic idea, criteria o	ry II:-Quantum r f forming Molecu	nechanical approach of	one dimensional box. molecular orbital theory		
	Quantum Chemistr basic idea, criteria o	ry II:-Quantum r f forming Molecu	nechanical approach of	one dimensional box. molecular orbital theory		
	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon	we equation to Particle in nechanical approach of lar orbitals, LCAO(Lind 2^+ ion, calculation of energing wave functions	one dimensional box. molecular orbital theory ear combination of atomic rrgy of energy levels fron		
	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon	we equation to Particle in nechanical approach of lar orbitals, LCAO(Lind 2^+ ion, calculation of energing wave functions	one dimensional box. molecular orbital theory ear combination of atomic rrgy of energy levels fron		
	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding,	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and	twe equation to Particle in nechanical approach of alar orbitals, LCAO(Ling 2 ⁺ ion, calculation of ene ding wave functions, ca pi anti bonding MOs	one dimensional box. molecular orbital theory ear combination of atomi		
Π	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O.	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. N	twe equation to Particle in nechanical approach of alar orbitals, LCAO(Ling 2 ⁺ ion, calculation of ene ding wave functions, ca pi anti bonding M.Os.	one dimensional box. molecular orbital theory ear combination of atomi ergy of energy levels fron oncept of sigma bonding and their characteristics		
II	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate:	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. M Introduction and	we equation to Particle in nechanical approach of lar orbitals, LCAO(Lind 2 ⁺ ion, calculation of ene ding wave functions, co pi anti bonding M.Os. <u>Addel.</u>	one dimensional box. molecular orbital theory ear combination of atomic orgy of energy levels fron oncept of sigma bonding and their characteristics		
п	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. N Introduction and	the equation to Particle in nechanical approach of alar orbitals, LCAO(Line 2 ⁺ ion, calculation of ene ding wave functions, ca pi anti bonding M.Os. <u>Aodel.</u> classification of carboh	none dimensional box. molecular orbital theory ear combination of atomi- orgy of energy levels fron poncept of sigma bonding and their characteristics		
ĪĪ	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic Relative and absolute	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. M Introduction and c structure of gluce configuration of	we equation to Particle in nechanical approach of alar orbitals, LCAO(Line 2 ⁺ ion, calculation of ene ding wave functions, ca pi anti bonding M.Os. <u>Aodel.</u> classification of carboh ose and fructose, epimer carbohydrates. Specific	none dimensional box. molecular orbital theory ear combination of atomi orgy of energy levels fron boncept of sigma bonding and their characteristics hydrate, monosaccharide: and anomers of glucose.		
п	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic Relative and absolute of glucose. Determi	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. N Introduction and c structure of gluc c configuration of nation of ring si	we equation to Particle in nechanical approach of alar orbitals, LCAO(Lind 2 ⁺ ion, calculation of ener ding wave functions, ca pi anti bonding M.Os. <u>Aodel.</u> classification of carboh ose and fructose, epimer carbohydrates, Specific	none dimensional box. molecular orbital theory ear combination of atomic orgy of energy levels from oncept of sigma bonding and their characteristics hydrate, monosaccharide: and anomers of glucose. rotation and mutarotation		
п	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic Relative and absolute of glucose. Determin Osazone formation,	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. M Introduction and c structure of gluce configuration of nation of ring si oxidation, reduc	we equation to Particle ir nechanical approach of lar orbitals, LCAO(Lind 2 ⁺ ion, calculation of ene ding wave functions, co pi anti bonding M.Os. <u>Aodel.</u> classification of carboh ose and fructose, epimer carbohydrates, Specific ize in glucose. Chemic	none dimensional box. molecular orbital theory ear combination of atomic orgy of energy levels from oncept of sigma bonding and their characteristics hydrate, monosaccharide: and anomers of glucose. rotation and mutarotation al properties of glucose:		
п	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic Relative and absolute of glucose. Determit Osazone formation, Glucose and fructose,	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. M Introduction and c structure of gluc c configuration of nation of ring si oxidation, reduc c Chain lengthenin	twe equation to Particle in nechanical approach of alar orbitals, LCAO(Line 2 ⁺ ion, calculation of ene ding wave functions, ca pi anti bonding M.Os. <u>Aodel.</u> classification of carboh ose and fructose, epimer carbohydrates, Specific ize in glucose. Chemic ction, Reaction with H	none dimensional box. molecular orbital theory ear combination of atomi orgy of energy levels from oncept of sigma bonding and their characteristics hydrate, monosaccharide: and anomers of glucose. rotation and mutarotation al properties of glucose: IO4, Interconversion of	12	
п	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic Relative and absolute of glucose. Determi Osazone formation, Glucose and fructose, Sucrose, Lactose and	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. M Introduction and c structure of gluc c configuration of nation of ring si oxidation, reduc c Chain lengthenin Maltose. Structure	twe equation to Particle in nechanical approach of alar orbitals, LCAO(Lind 2 ⁺ ion, calculation of ener ding wave functions, ca pi anti bonding M.Os. <u>Aodel.</u> classification of carboh ose and fructose, epimer carbohydrates, Specific ize in glucose. Chemic tion, Reaction with H ag and chain shortening.	none dimensional box. molecular orbital theory ear combination of atomic orgy of energy levels from oncept of sigma bonding and their characteristics hydrate, monosaccharide: and anomers of glucose. rotation and mutarotation al properties of glucose: IO4, Interconversion of Structure of Disaccharide		
п	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic Relative and absolute of glucose. Determi Osazone formation, Glucose and fructose, Sucrose, Lactose and (B) Amino Acid & F	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. M Introduction and c structure of gluc c configuration of nation of ring si oxidation, reduc c Chain lengthenin Maltose. Structure Protein : amino aci	ave equation to Particle in nechanical approach of alar orbitals, LCAO(Lind 2 ⁺ ion, calculation of ener ding wave functions, ca pi anti bonding M.Os. <u>Aodel.</u> classification of carboh cose and fructose, epimer carbohydrates, Specific ize in glucose. Chemic cition, Reaction with H ag and chain shortening. Se of polysaccharide: Stard id types of amino acid in	none dimensional box. molecular orbital theory ear combination of atomic orgy of energy levels from oncept of sigma bonding and their characteristics hydrate, monosaccharide: and anomers of glucose. rotation and mutarotation al properties of glucose: IO4, Interconversion of Structure of Disaccharide	12	
п	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic Relative and absolute of glucose. Determit Osazone formation, Glucose and fructose, Sucrose, Lactose and (B) Amino Acid & P of protein primary, set	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. M Introduction and c structure of gluce configuration of nation of ring si oxidation, reduce Chain lengthenin Maltose. Structure Protein : amino aci condary and tertia	ave equation to Particle in nechanical approach of alar orbitals, LCAO(Lind 2 ⁺ ion, calculation of ener- ding wave functions, ca- pi anti bonding M.Os. <u>Aodel</u> . classification of carboh cose and fructose, epimer carbohydrates, Specific ize in glucose. Chemic ction, Reaction with H ag and chain shortening. Se of polysaccharide: Stard id types of amino acid, is ry structure	a one dimensional box. molecular orbital theory ear combination of atomic orgy of energy levels from oncept of sigma bonding and their characteristics hydrate, monosaccharide: and anomers of glucose. rotation and mutarotation al properties of glucose: IO4, Interconversion of Structure of Disaccharide ch, Cellulose. soelectric point, structure	12	
п	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic Relative and absolute of glucose. Determi Osazone formation, Glucose and fructose, Sucrose, Lactose and (B) Amino Acid & P of protein primary, see (C) Nucleic Acid: c	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. M Introduction and c structure of gluc c configuration of nation of ring si oxidation, reduc c Chain lengthenin Maltose. Structure Protein : amino aci condary and tertia components of n	ave equation to Particle in nechanical approach of alar orbitals, LCAO(Lind 2 ⁺ ion, calculation of ener- ding wave functions, ca- pi anti bonding M.Os. <u>Aodel</u> . classification of carboh cose and fructose, epimer carbohydrates, Specific ize in glucose. Chemic ction, Reaction with H ag and chain shortening. Se of polysaccharide: Stard id types of amino acid, is ry structure	a one dimensional box. molecular orbital theory ear combination of atomic orgy of energy levels from oncept of sigma bonding and their characteristics hydrate, monosaccharide: and anomers of glucose. rotation and mutarotation al properties of glucose: IO4, Interconversion of Structure of Disaccharide ch, Cellulose. soelectric point, structure	12	
	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic Relative and absolute of glucose. Determi Osazone formation, Glucose and fructose, Sucrose, Lactose and (B) Amino Acid & P of protein primary, see (C) Nucleic Acid: o	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. M Introduction and c structure of gluce c configuration of nation of ring si oxidation, reduce Chain lengthenin Maltose. Structure Protein : amino action condary and tertia components of n of nucleic acid.	ave equation to Particle in nechanical approach of alar orbitals, LCAO(Lind 2 ⁺ ion, calculation of ener- ding wave functions, ca- pi anti bonding M.Os. <u>Aodel</u> . classification of carboh cose and fructose, epimer carbohydrates, Specific ize in glucose. Chemic ction, Reaction with H ag and chain shortening. Se of polysaccharide: Stard id types of amino acid, is ry structure	none dimensional box. molecular orbital theory ear combination of atomic orgy of energy levels from oncept of sigma bonding and their characteristics hydrate, monosaccharide: and anomers of glucose. rotation and mutarotation al properties of glucose: IO4, Interconversion of Structure of Disaccharide	12	
	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic Relative and absolute of glucose. Determi Osazone formation, Glucose and fructose, Sucrose, Lactose and (B) Amino Acid & P of protein primary, see (C) Nucleic Acid: o nucleotide, structure o	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. M Introduction and c structure of gluc c configuration of nation of ring si oxidation, reduc c Chain lengthenin Maltose. Structure Protein: amino aci condary and tertia components of n of nucleic acid.	we equation to Particle in nechanical approach of alar orbitals, LCAO(Lind 2 ⁺ ion, calculation of ener- ding wave functions, ca- pi anti bonding M.Os. <u>Aodel.</u> classification of carboh cose and fructose, epimer carbohydrates, Specific ize in glucose. Chemic cition, Reaction with H ag and chain shortening. Se of polysaccharide: Stard id types of amino acid, is ry structure. ucleic acid, types of n	a one dimensional box. molecular orbital theory ear combination of atomic orgy of energy levels from oncept of sigma bonding and their characteristics hydrate, monosaccharide: and anomers of glucose. rotation and mutarotation al properties of gluose: IO4, Interconversion of Structure of Disaccharide th, Cellulose. soelectric point, structure ucleic acid, nucleoside,	12	
	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic Relative and absolute of glucose. Determit Osazone formation, Glucose and fructose, Sucrose, Lactose and (B) Amino Acid & P of protein primary, see (C) Nucleic Acid: o nucleotide, structure o (A)Organometallic c	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. M Introduction and c structure of gluc c configuration of nation of ring si oxidation, reduc c Chain lengthenin Maltose. Structure Protein : amino aci condary and tertia components of n <u>of nucleic acid</u> .	actions of organomagnes	a one dimensional box. molecular orbital theory ear combination of atomic orgy of energy levels from oncept of sigma bonding and their characteristics hydrate, monosaccharide: and anomers of glucose. rotation and mutarotation al properties of gluose: IO4, Interconversion of Structure of Disaccharide th, Cellulose. soelectric point, structure ucleic acid, nucleoside,	12	
	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic Relative and absolute of glucose. Determi Osazone formation, Glucose and fructose, Sucrose, Lactose and (B) Amino Acid & P of protein primary, sec (C) Nucleic Acid: o nucleotide, structure o (A)Organometallic co	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. N Introduction and c structure of gluc c configuration of nation of ring si oxidation, reduc c, Chain lengthenin Maltose. Structure Protein : amino action condary and tertia components of n of nucleic acid. Ompound: c, and chemical read d, Organolithium c	actions of organomagnes	a one dimensional box. molecular orbital theory ear combination of atomic orgy of energy levels from oncept of sigma bonding and their characteristics hydrate, monosaccharide: and anomers of glucose. rotation and mutarotation al properties of gluose: IO4, Interconversion of Structure of Disaccharide th, Cellulose. soelectric point, structure ucleic acid, nucleoside,	12	
	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic Relative and absolute of glucose. Determit Osazone formation, Glucose and fructose, Sucrose, Lactose and (B) Amino Acid & P of protein primary, see (C) Nucleic Acid: o nucleotide, structure o (A)Organometallic c Preparation, Structure Organozinc compound Organosulphur compo	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. M Introduction and c structure of gluce c configuration of nation of ring si oxidation, reduce c configuration, reduce c configuration of nation of ring si oxidation, reduce condary and tertia components of n of nucleic acid. Ompound: c, and chemical read d, Organolithium cound	actions of organomagnes: compound,	a one dimensional box. molecular orbital theory ear combination of atomic orgy of energy levels from oncept of sigma bonding and their characteristics hydrate, monosaccharide: and anomers of glucose. rotation and mutarotation al properties of gluose: IO4, Interconversion of Structure of Disaccharide ch, Cellulose. soelectric point, structure ucleic acid, nucleoside,	12	
	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic Relative and absolute of glucose. Determit Osazone formation, Glucose and fructose, Sucrose, Lactose and (B) Amino Acid & P of protein primary, see (C) Nucleic Acid: o nucleotide, structure o (A)Organometallic c Preparation, Structure Organozinc compound Organosulphur compo (B) Synthesis of orga	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. M Introduction and c structure of gluce c configuration of nation of ring si oxidation, reduce Chain lengthenin Maltose. Structure Protein : amino aci condary and tertia components of n of nucleic acid. Ompound: e, and chemical read d, Organolithium of pund nic compound vie	a enolates : Active method	a one dimensional box. molecular orbital theory ear combination of atomic orgy of energy levels from oncept of sigma bonding and their characteristics hydrate, monosaccharide: and anomers of glucose. rotation and mutarotation al properties of gluose: IO4, Interconversion of Structure of Disaccharide ch, Cellulose. soelectric point, structure ucleic acid, nucleoside,	12	
	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic Relative and absolute of glucose. Determit Osazone formation, Glucose and fructose, Sucrose, Lactose and (B) Amino Acid & P of protein primary, see (C) Nucleic Acid: o nucleotide, structure o (A)Organometallic c Preparation, Structure Organozinc compound Organosulphur compo (B) Synthesis of orga	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. M Introduction and c structure of gluce c configuration of nation of ring si oxidation, reduce Chain lengthenin Maltose. Structure Protein : amino aci condary and tertia components of n of nucleic acid. Ompound: e, and chemical read d, Organolithium of pund nic compound vie	a enolates : Active method	a one dimensional box. molecular orbital theory ear combination of atomic orgy of energy levels from oncept of sigma bonding and their characteristics hydrate, monosaccharide: and anomers of glucose. rotation and mutarotation al properties of gluose: IO4, Interconversion of Structure of Disaccharide ch, Cellulose. soelectric point, structure ucleic acid, nucleoside,	12	
III	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic Relative and absolute of glucose. Determit Osazone formation, Glucose and fructose, Sucrose, Lactose and (B) Amino Acid & P of protein primary, see (C) Nucleic Acid: o nucleotide, structure o (A)Organometallic c Preparation, Structure Organozinc compound Organosulphur compo (B) Synthesis of orga	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. M Introduction and c structure of gluce c configuration of nation of ring si oxidation, reduce Chain lengthenin Maltose. Structure Protein : amino aci condary and tertia components of n of nucleic acid. Ompound: e, and chemical read d, Organolithium of pund nic compound vie	actions of organomagnes: compound,	a one dimensional box. molecular orbital theory ear combination of atomic orgy of energy levels from oncept of sigma bonding and their characteristics hydrate, monosaccharide: and anomers of glucose. rotation and mutarotation al properties of gluose: IO4, Interconversion of Structure of Disaccharide ch, Cellulose. soelectric point, structure ucleic acid, nucleoside,	12	
	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic Relative and absolute of glucose. Determit Osazone formation, Glucose and fructose, Sucrose, Lactose and (B) Amino Acid & P of protein primary, see (C) Nucleic Acid: o nucleotide, structure o (A)Organometallic c Preparation, Structure Organozinc compound Organosulphur compo (B) Synthesis of orga	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. M Introduction and c structure of gluce c configuration of nation of ring si oxidation, reduce Chain lengthenin Maltose. Structure Protein : amino aci condary and tertia components of n of nucleic acid. Ompound: e, and chemical read d, Organolithium of pund nic compound vie	a enolates : Active method	a one dimensional box. molecular orbital theory ear combination of atomic orgy of energy levels from oncept of sigma bonding and their characteristics hydrate, monosaccharide: and anomers of glucose. rotation and mutarotation al properties of gluose: IO4, Interconversion of Structure of Disaccharide ch, Cellulose. soelectric point, structure ucleic acid, nucleoside,	12	
	Quantum Chemistr basic idea, criteria o orbital) approximatio wave functions, bon sigma antibonding, Comparison of M.O. (A)Carbohydrate: I open chain and cyclic Relative and absolute of glucose. Determit Osazone formation, Glucose and fructose, Sucrose, Lactose and (B) Amino Acid & P of protein primary, see (C) Nucleic Acid: o nucleotide, structure o (A)Organometallic c Preparation, Structure Organozinc compound Organosulphur compo (B) Synthesis of orga	ry II:-Quantum r f forming Molecu on, formation of H ding and antibon pi bonding and theory and V.B. M Introduction and c structure of gluce c configuration of nation of ring si oxidation, reduce Chain lengthenin Maltose. Structure Protein : amino aci condary and tertia components of n of nucleic acid. Ompound: e, and chemical read d, Organolithium of pund nic compound vie	a enolates : Active method	a one dimensional box. molecular orbital theory ear combination of atomic orgy of energy levels from oncept of sigma bonding and their characteristics hydrate, monosaccharide: and anomers of glucose. rotation and mutarotation al properties of gluose: IO4, Interconversion of Structure of Disaccharide ch, Cellulose. soelectric point, structure ucleic acid, nucleoside,	12	

condensation and Robinson anealation. Synthesis of monoalkyl and dialkyl derivative, fatty acids, dibasic acid, α , β unsaturated acid, valeric acid, monoketone, diketone, heterocyclic compounds etc. IV Spectroscopy II(Organic) (A) Infra red Spectroscopy: Basic principle and instrumentation, introduction, Modes of vibrations, fundamental band of different bond and functional groups, identification of band for compound and IR spectra of different compounds. Applications of IR spectroscopy. (B)Principle and instrumentation of UV-visible spectroscopy, Introduction, wavelength maxima, Beer Lambert's Law, Shifts in UV-visible spectra, Chromophore -Auxochrome theory, Effect of conjugation on wavelength maxima. Types of electronic transitions. Applications of UV-visible spectroscopy. Woodward Fischer rule for polyene 11 wavelength maxima calculation. (C) NMR (Nuclear Magnetic Resonance): Introduction to NMR, Basic principle and instrumentation, No. of signal in PMR(proton Magnetic Resonance), Chemical shift, Sheilding and deshielding effect, Splitting of signal or spin-spin interaction, Intensity of Signal and peak height and peak ratio. Coupling Constant J. Proton NMR of some compound like ethanol, propanol, toluene, acetaldehyde, ketone, 1, 2-dibromoethylene etc. Particle in one Dimensional Box, Hydrogen atom, Proton NMR, UV Visible, Vibrational Spectra. Keywords Woodward Fischer Rule. SignatureofConvener&Members (CBoS):

PART-C:Learning Resources

Text Books, Reference Books and Others

Text Books Recommended:

- 1. Tandon, M. M. N., & Agarwal, S. C. (2022). Unified chemistry. Shivalal and Company.
- 2. Sharma, B. K. (2010). Spectroscopy comprehension. Goel Publishing House.
- 3. Puri, B. R., Sharma, L. R., & Pathania, M. S. (2021). Principles of physical chemistry. Vishal Publications.

4. Gurtu, J. N., & Gurtu, R. (2015). Advanced physical chemistry. Pragati Prakashan. **Reference Books Recommended:**

- - 5. Atkins, P. W., de Paula, J., & Keeler, J. A. (2005). Atkins' physical chemistry Oxford University Press.
 - 6. Pandya, A. J. (2010). A textbook of biochemistry: Nucleic acids, proteins and carbohydrates.
- 7. Korte, F., & Goto, M. (2009) Nucleic acids, proteins and carbohydrates, John Willy & Sons

Online Resources:

- https://onlinecourses.nptel.ac.in/noc23_cy09/preview
- https://www.udemy.com/course/ochemnmr/?couponCode=LEADERSALE24A
- https://en.wikipedia.org/wiki/Bioorganic chemistry#:~:text=Biophysical%20organic%20ch emistry%20is%20a,nature%20to%20determine%20their%20properties.
- https://onlinecourses.nptel.ac.in/noc21 cy38/preview

PART-D: Assessment and Evaluation

Suggested Continuous Evaluation Methods: **Maximum Marks:**

100 Marks Continuous Internal Assessment(CIA):30 Marks

End Semester Exam(ESE):70 Marks

Continuous Interna Assessment(CIA):	I Internal Test / Quiz-(2): 20 #20 Assignment/Seminar- 10	Better marks out of the two Test / Quiz+
(By Course Teacher)	Total Marks -30	obtained marks in Assignment shall be considered against 30 Marks
End Semester	Two section – A & B	considered against 50 Marks
Exam (ESF).	Section A: 01 Objective 10 -10	

15 81

bjective -10 x1 = 10 Mark; Q2. Short answer type- 5x4 = 20Marks Section B: Descriptive answer type qts., 1out of 2 from each unit-4x10=40Marks

Name and Signature of Convener & Members of CBoS:

lu Rink De F. M. South

A

FOUR YEAR UNDERGRADUATE PROGRAM (2024 – 28) DEPARTMENT OF CHEMISTRY COURSE CURRICULUM

P			SE CURRICULUM			
	PART-A: Intro	luction				
<u>(</u> [rogram:Bachelor Diploma / Degree)	n Science	Semester VI	Session: 2024-2	2025	
1	CourseCode	CHSC-06P				
2 CourseTitle3 CourseType			CHEMISTRY LAB	COURSE VI		
			DSC			
4	Pre-requisite(if,any	As per Program				
5	Outcomes(CLO) In real sample analysis. > To learn the synthesis of organic compounds > To learn the use of conductometer and spectrophotometer		involved in separation a l. ive and quantitative estin	mations		
6	CreditValue 1 Credits Credit = 30 Hours Laboratory or Field Lee		itory or Field lowering			
7	TotalMarks	Max.Marks:5	0	Min Passing Marks:20		
PAI	RT -B: Content	oftheCourse	9	1111 1 ussing Walks.20	,	
	TotalN	o.of learning-Train	ning/performancePeriods	:30 Periods (30 Hours)		
Mod	dule				NT- CD	
	(T) 1 1 4 1		opics(Coursecontents)		No.ofP	
Frain xper Cont	 timent 2)To titrate pot tents burse K₂Cr₂O₇ as titra scale. Organic mixture Separation and organic mixture derivative. Synthesis of one (a)synthesis of a (c)Preparation of (d)Preparation of (f)Preparation of (g)Preparation (g)Prepa	the solubility and entiometrically the at and calculate red e analysis Identification of tw by H ₂ O,NaHCO ₃ , organic compound dinitrobenzene from cetanilide from anil iodoform from etha p-bromoacetanilide 2,4,6-tribromophen methyl orange and r benzoic acid from t	solubility product of Spar given ferrous sulphate so ox potential of Fe ²⁺ /Fe ³⁺ wo solid organic compou NaOH for separation and d :- m nitrobenzene. ine mol and acetone ol. methyl red.	ingly soluble salt using olution using KMnO4 / system on the hydrogen	30	
Train xper Cont	 timent 2)To titrate pot tents burse K₂Cr₂O₇ as titra scale. Organic mixture Separation and organic mixture derivative. Synthesis of one (a)synthesis of m (b) synthesis of a (c)Preparation of (d)Preparation of (f)Preparation of (f)Preparation of (g)Preparation of (h)Preparation (the solubility and entiometrically the at and calculate red e analysis Identification of tw by H ₂ O,NaHCO ₃ , organic compound dinitrobenzene from cetanilide from anil iodoform from etha p-bromoacetanilide 2,4,6-tribromophen methyl orange and r benzoic acid from t aniline from nitrobe	solubility product of Spar given ferrous sulphate so ox potential of Fe ²⁺ /Fe ³⁺ wo solid organic compou NaOH for separation and d :- m nitrobenzene. ine mol and acetone ol. methyl red.	ingly soluble salt using olution using KMnO4 / system on the hydrogen nds from given binary preparation of suitable	<u>riod</u>	

Signature of Convener & Members (CBoS): with a 1C8L lu Miliah Indira Detis July

Text DOORS, Referen	ice Books and Others					
Text Books Recommend	ded:					
1. Tandon, M. M.	N., & Shiva Lal Agarwal & Company.	. (2012). B.Sc. Practical Chamister				
2. 1 unucy, 0. 1., D	M. N., & Shiva Lal Agarwal & Company. (2012). BSc. Practical Chemistry. 2, BajPai, D. N., Giri, S., & S. Chand. (2013). Practical Chemistry.					
acjerence books Aecon	nmenaea:					
1. Bassett, J., Denn	1. Bassett, J., Denney, R. C., Jeffery, G. H., & Mendham, J. (2000). Vogel's Text Book of Qualitative Analysis (revised), ELDS					
Zummure Analysi	s (reviseu). ELBS.					
2. Das, R. C., & Behra, B. (2002). Experimental Physical Chemistry Tata McCrawIIII						
Online Resources:						
N						
e-Resources / e-bo	ooks and e-learning portals					
https://chem.libi	<u>https://chem.libretexts.org/Courses/University of California Davis/Chem. 40 Juli/2010</u>					
cherui chemist	ry 101 Majors/Chem 40%3A Labo	oratory Manual/05%3A Potentiometr				
C Intations (E)	Aperiment)					
https://viab.amr	ita.edu/?sub=2&brch=191	a.edu/?sub=2&brch=191				
> <u>https://www.org</u>						
PART-D: Assess	sment and Evaluation					
Suggested Continuous	Evaluation Methods:					
Maximum Marks: 5	0 Marks					
Continuous Internal A	ssessment(CIA):15 Marks					
End Semester Exam(E	CSE):35Marks					
Continuous Internal	Internal Test / Quiz-(2): 10 & 10	Better marks out of thetwo Test / Quiz				
Assessment(CIA):	Assignment/Seminar +Attendance- 05	+obtained marks in Assignment shall be				
(By Course Teacher)	otal Marks -15	considered against 15 Marks				
End Semester	Laboratory / Field Skill Performand	ce: On shot Assessment Managed by				
	F. Performed the Task based on lab	Work - 20 Marka Course teacher				
	O Spotting based on to 1 0 1 1	Off (written) 10 Manlas of pon lab stat				
	Q. Sporting based on tools& technol	(ogy (written) – To Warks as Der lab, stath				
Exam (ESE):	Q. Spotting based on tools& technol R. Viva-voce (based on principle/tec	hnology) - 05 Marks				
Exam (ESE):	R. Viva-voce (based on principle/tec	logy (written) – 10 Marks as per lab. statu <u>shnology) - 05 Marks</u>				

lui-Reruh

FOUR YEAR UNDERGRADUATE PROGRAM (2024 – 28)